AtomInfo.Ru


Юрий Хомяков: со сталью отношения сложные

AtomInfo.Ru, ОПУБЛИКОВАНО 03.09.2010

В начале 2010 года МАГАТЭ опубликовало итоговый обзор большой работы, проделанной международным коллективом авторов по нейтронно-физическим расчётам бенчмарка, созданного по гибридной зоне реактора БН-600.

Ответить на возникшие у электронного издания AtomInfo.Ru вопросы любезно согласился заместитель директора по науке Института ядерных реакторов и атомной энергетики ГНЦ РФ - ФЭИ Юрий ХОМЯКОВ.

ПРОДОЛЖЕНИЕ ПОСЛЕ ФОТО

Юрий Хомяков

Бенчмарк от России

Юрий Сергеевич, просим Вас рассказать поподробнее о том, что это за документ и какую работу венчает его выход в свет?

Начну издалека. Если сравнивать доклады, представляемые на международных конференциях по быстрым реакторам российскими и зарубежными специалистами, то разница между ними видна невооружённым глазом. Мы говорим о конкретных результатах, проектах, живых установках, а наши коллеги в большинстве своём вынуждены заниматься расчётно-аналитическими исследованиям, но не живым делом.

Наша деятельность, связанная с БН-600 как единственным в мире работающим энергетическим реактором на быстрых нейтронах, уникальна. Это вершина, которую на сегодня пока никто другой не достиг. Следующий этап, на который мы выходим в ближайшее время - освоение гибридной зоны, то есть, первой зоны, в которой будет активно использовано MOX-топливо.

С точки зрения физики, гибридная зона особенно интересна, так как у неё не было аналогов. Везде в мире быстрые реакторы работали или только на смешанном топливе, или только на урановом. Такие загрузки анализировались, для них есть бенчмарки, в том числе, по БН-800.

Но гибридная зона уникальна. В ней соединяются два разных по физическим свойствам топлива - урановое и смешанное. Особенно это важно в части, связанной с кинетикой, из-за разных долей запаздывающих нейтронов. Поэтому неудивительно, что возник интерес к созданию для такой зоны бенчмарка.

Важно, что бенчмарк этот не чисто теоретический. Он поставлен по варианту активной зоны, которая вскоре должна быть реализована на практике. Дополнительную особенность придавало включение в состав бенчмарка экспериментов, сделанных на сборке БФС.

Бенчмарк мог пойти только от России, потому что только у нас есть соответствующие возможности. Формулировался он в ФЭИ А.В.Данилычевым и В.Ю.Стоговым. Работа была поддержана главным конструктором, активное участие в ней принимали такие ведущие специалисты ОКБМ как Б.А.Васильев и М.Р.Фаракшин.

Могу добавить, что на крупнейшей международной конференции по быстрым реакторам, состоявшейся в декабре прошлого года в Киото, проводился конкурс работ. И доклад по гибридному бенчмарку стал победителем, и вся наша деятельность получила, таким образом, высокую оценку в мире.

Кто проводил бенчмарк? Как он был оформлен организационно?

Бенчмарк проводился в рамках МАГАТЭ. Для таких проектов, как правило, собираются рабочие группы, или так называемый координационный проект, в котором принимают участие разные страны. Они присылают своих специалистов, экспертов для работы в рамках группы.

Бенчмарк был разбит на несколько этапов. В конце каждого из них проводилось обсуждение и сравнение полученных результатов. Расчёты проводили коллективы из Франции, США, Германии, подключались команды из Индии, Южной Кореи и Японии. Роль России была координирующей. Все данные стекались к российским специалистам для компиляции и формулирования выводов, которые потом ставились на обсуждение в рабочей группе.

Расчёты коэффициентов реактивности

В чем суть бенчмарка? Что моделировалось и какие процессы?

В первую очередь, бенчмарк посвящён исследованию точности расчётов коэффициентов реактивности. Это параметры, которые напрямую влияют на безопасность реактора, в том числе, и на обратные связи.

Такая задача была поставлена впервые. Ранее для быстрых реакторов бенчмарка по коэффициентам реактивности не проводилось. По критическим параметрам были, а по коэффициентам - нет.

Какие коэффициенты затрагивались в нашей работе? Упомяну коэффициенты по расширению активной зоны с изменением её геометрии. Разумеется, рассматривался Допплер-эффект и некоторые другие, важные для безопасности.

Мы пытались понять, определить, насколько отличаются результаты расчётов по кодам и константам, принятым в разных странах. На второй стадии мы смотрели, к чему могут привести наблюдающиеся различия при анализе тяжёлых аварий. Для этого мы рассматривали два типа аварий - с самоходом стержня СУЗ и с полной потерей электроснабжения при несрабатывании всех элементов воздействия на реактивность.

Последняя авария интересна тем, что реактор работает в ней за счёт собственных коэффициентов реактивности и собственных свойств безопасности. Мы проводили исследования, чтобы понять, как он сможет справиться в такой тяжёлой ситуации.

Всё-таки, что именно моделировалось? Только активная зона, или же включалась модель первого контура?

Безусловно, основная часть бенчмарка - физические расчёты, определение коэффициентов реактивности. Было принципиально важно получить численные оценки и понять, насколько корректно их умеют считать в разных странах и институтах, так как коэффициенты реактивности являются входными параметрами в расчёте безопасности.

Собственно расчёты безопасности носили в нашем бенчмарке оценочный характер. Надо понимать, что это отдельная большая и непростая работа, требующая значимых трудозатрат. Для наших целей подробное моделирование не требовалось, так как нас интересовал масштаб явлений.

Отвечая на ваш вопрос, скажу так. Расчёты в бенчмарке делались с гидравликой. Но гидравлика была только там, где она соединяется с нейтронами. То есть, в активной зоне.

Насколько мы понимаем, бенчмарк состоял из двух частей. Первая - это реальные эксперименты на БФС, вторая - прогнозные, если можно так выразиться, расчёты для БН-600.

На самом деле, всё сложнее. Бенчмарк длился лет 7-8, и у него было шесть этапов. Они шли по нарастающей, так как по ходу дела у вовлечённых в бенчмарк специалистов росли аппетиты.

Сначала была сделана двумерная модель активной зоны, потом трёхмерная, затем трёхмерная гетерогенная, а ближе к концу появились модели БН-800 с полной загрузкой MOX-топливом и с использованием минорных актинидов.

По мере развития бенчмарка всё чаще и чаще стали задаваться вопросы о желательности подкрепить расчётные данные экспериментальными. И тут помогли мы вместе с японцами. В России на протяжении пяти с лишним лет выполнялась программа совместных работ с японской JNC по экспериментальному моделированию гибридной активной зоны. Программа возникла в связи с темой об утилизации оружейного плутония и, надо честно признать, много нам дала.

МАГАТЭ сделало запрос России и Японии о передаче агентству экспериментального бенчмарка. Одно из состояний, изучавшихся в ходе двухсторонней программы, было доведено до уровня бенчмарка и отдано в распоряжение агентства. Так в нашем обсуждаемом бенчмарке появился этап, позволявший сравнить результаты расчётов с реальными экспериментальными данными.

Расхождение 20%

Вопросы по результатам работы. Что показал бенчмарк? Каково состояние быстрых кодов в мире?

При ответе надо исходить из того, что эта область специфическая. Многие выводы, которые специалистам кажутся очевидными, иногда очень трудно интерпретировать.

Первый колоссальный результат - то, что мы впервые реально получили оценку точности расчётов коэффициентов реактивности. Это на самом деле очень важно. Теперь у нас появилось представление, насколько верно мы считаем.

Расчёты коэффициентов реактивности - это проблема. Это действительно большая и сложная проблема. Возьмите хотя бы коэффициенты реактивности, связанные с изменением геометрии активной зоны. Как описать для них математическую модель? Как именно изменяется геометрия зоны - расширяется ли она в виде бочки, в виде корзины, или расширяется в стороны? Теперь мы можем почувствовать, насколько корректны наши представления.

А померить коэффициенты по расширению нельзя?

На критсборках измерить их нельзя, потому что там нет рабочих температур. А на реакторах типа БН-600 эффект этот проявляется, но он "замазан", интегрирован во множество других эффектов. Их приходится разделять друг с другом, и от того, каким путём это будет сделано, зависит интерпретация итоговых результатов.

Кстати, по этой причине чрезвычайно полезной оказалась совместная работа с участием наших и зарубежных специалистов по разложению эффектов на "подэффекты" и по сравнению методологии их расчётов в различных приближениях - гомогенном, гетерогенном, диффузионном, кинетическом и так далее. Понимаете, тут каждый эффект тянет на диссертацию.

Приведу пример - эффект от изменения геометрии стержней СУЗ. Органы управления и защиты находятся на верхней крышке, а активная зона стоит снизу от них. При расширении зоны они начинают друг в друга "вставляться". Фактически, это эквивалентно тому, что стержни погружаются в активную зону из-за удлинения штанг и прочих элементов. Корректный расчёт этого эффекта долгое время не давался специалистам, а окончательное решение этой проблемы было получено М.Р.Фаракшиным в его диссертации с учетом результатов обсуждаемого бенчмарка.

Уточнение моделей расширения - сложный процесс, требовавший постоянного контакта с научных работников и конструкторов. Но и есть и другие эффекты, носящие чисто физический характер. Это, например, Допплер-эффект, определяющийся в основном нейтронными данными.

Можно попросить уточнить, каково было расхождение между расчётами Допплер-эффекта разными группами специалистов, принимавших участие в бенчмарке?

Максимальное расхождение составило около 20%. На первый взгляд, это неплохой результат. Но, по нашим ощущениям, должно было быть меньше.

Проблема стального отражателя

А действительно, за счёт чего получилась разница в 20%? Это много. Какие изотопы сыграли определяющую роль?

Повторю, что это максимальный разброс. В бенчмарках бывает всякое. Какая-либо из оценок может вылететь по сравнению с остальными.

По Допплер-эффекту результаты сильно зависят от сечений изотопов плутония, высших изотопов, начиная с 240Pu. Если в топливе есть минорные актиниды, то они тоже могут влиять на этот эффект. Было видно, что по мере усложнения бенчмарка, перехода к полной загрузке активной зоны, к загрузке топлива с минорными актинидами погрешности растут.

Интересно отметить, что большие расхождения были замечены по коэффициентам реактивности для стали. С точки зрения нейтронной физики, сталь - это смесь множества изотопов, в том числе, примесей, и каждый из них вносит свой вклад в реактивностные эффекты.

В обычных ситуациях погрешностями расчёта коэффициентов для стали можно пренебречь. Но если у нас возникает тяжёлая авария, сталь плавится и может перемещаться в другие пространственные зоны, то точность её учёта в вычислениях может оказаться важной.

Естественно, что огромное внимание уделялось натриевому пустотному эффекту реактивности (НПЭР). Это ключевая позиция при использовании MOX-топлива. Напомню, что есть разница в подходах, принятых у нас и у наших зарубежных коллег.

Российский подход заключается в том, что мы придерживаемся концепции нулевого НПЭР и проектируем активную зону соответствующим образом - с интегральным натриевым коэффициентом реактивности, близким к нулю. За рубежом такого жёсткого требования не ставится, и там развивают активные зоны с положительным НПЭР.

Что важно для нас с точки зрения расчётов? Мы должны понимать, с какой точностью мы получаем нулевой эффект. Если это, ноль плюс-минус бетта, то нулевым такой эффект назвать нельзя.

Мы говорим об эффекте, напрямую связанным с безопасностью реакторов. И мы обязаны закладывать при его расчёте консервативные оценки, иными словами, с учётом погрешностей. Поэтому знание точности наших расчётов НПЭР имеет принципиальное значение.

Возвращаясь к 20%, как установить, кто, собственно, прав? Вдруг верные результаты даёт именно та группа, которую считают выбивающейся из всех остальных.

Общего алгоритма нет. Точнее, есть, но он донельзя простой. Первое, это кропотливые аналитические исследования, более детальные сравнения, расчёты альтернативными методами, коллективное обсуждение и нахождение ошибок и причин расхождения. Второе - эксперимент. Ничего другого предложить пока никто не предложил.

Как правило, если всё чётко сформулировано и разобрано, и поставлен эксперимент, то он даёт правильный ответ.

Хорошо, что делать дальше? И второй вопрос - вы определились с точностью расчётов коэффициентов для стали текущего состава. Но материаловеды постоянно ищут что-то новое. Завтра они предложат другую марку стали, и вам придётся повторять всю работу заново.

Давайте, я последовательно отвечу на ваши вопросы. Первое, нам нужно продолжить работу в том плане, чтобы довести её до реальных последствий аварий, и уже, исходя из этого, сделать выводы о степени важности расхождений в расчётах коэффициентов реактивности.

В бенчмарке мы доходили только до начального анализа протекания аварий. Проще говоря, мы останавливались в тот момент, когда начиналось кипение. Если в процессе присутствует кипение, то нам требуется переходить на совершенно другой класс кодов, и привлекать более широкий круг специалистов.

Мы предполагаем, где влияние расхождений может играть существенную роль. Но теперь к работе должны подключиться другие специалисты, которые занимаются анализом аварийных процессов. Нужно брать комплексные коды с учётом гидравлики и полным описанием контуров, вставлять в них наши результаты в качестве исходных данных и смотреть реальные последствия от предполагаемых аварий вплоть до выбросов в окружающую среду и применения защитных мер для населения.

Мы создали базу для дальнейших исследований, а после их проведения мы получим обратную связь - насколько сильно влияют на определение последствий тяжёлых аварий наши погрешности в расчётах коэффициентов реактивности.

Теперь второй вопрос, о стали. У нас со сталью сложные отношения. На БФС мы делали бенчмарк, в котором мы обнаружили серьёзные расхождения в распределениях нейтронного поля в стальных отражателях. Мы научились предсказывать с хорошей точностью нейтронные поля в средах с ураном и плутонием. Но как только мы переходим в стальной отражатель, то получаем расхождение с экспериментом на уровне 25% и более.

Мы анализировали несколько раз наши эксперименты, брали французские данные, американские… Но проблема остаётся. Мы её так и называем: "Проблема стального отражателя".

Сталь обладает сложными свойствами. Там много изотопов, сложная структура нейтронных сечений, есть резонансные минимумы, по которым сквозят нейтроны. Не исключено, что на интерпретацию результатов очень сильно могут влиять примеси типа марганца.

Мы неоднократно ставили эту проблему как тему международного сотрудничества и перед французами, и перед американцами. Второе, что мы сделали - на БФС провели серию экспериментов с компонентами стали. Отдельно ставили отражатели из железа, никеля, хрома, циркония и других элементов. Мы думаем, что когда работа будет завершена, то сумеем структурировать все эффекты по компонентам.

А известен ли состав сталей с достаточной точностью? Металлурги обращают внимание на примеси, но в пределах ТУ, а ТУ у нас бывают разные.

Если говорить о бенчмарке, то в нём, конечно же, примеси не учитывались. Другое дело, когда анализируются реальные эксперименты на БФС. Там имеют право появляться сомнения, в том числе, и по составу стали.

Но свои блочки мы неоднократно измеряли, отдавали химикам, искали все примеси и можем считать, что для них состав мы знаем хорошо. Чтобы полностью исключить все сомнения, мы сделали набор образцов разных сталей от различных производителей, партий изготовления и так далее.

Кроме погрешностей, вызванных неточным знанием состава, есть ещё влияние технологических погрешностей. Это отдельный разговор. С ними надо что-то делать. Развивать методы их оценки и компенсации. Иначе может сложиться такая ситуация, что погрешности кодов будут существенно снижены, а технологические погрешности останутся и будут определяющими и наши усилия - обесцененными.

Гибридная зона предполагает отсутствие экранов?

Да, гибридная зона - это зона со стальным экраном. Именно поэтому, в бенчмарке сразу возникла проблема стального отражателя.

К расчётам тяжёлых аварий

Есть ли планы по продолжению бенчмарка? Можно ли надеяться увидеть в будущем международные бенчмарки для БН-800 с новыми видами топлива, такими как нитрид или карбид?

Конкретно тот бенчмарк, который мы сегодня обсуждаем, находится на стадии завершения, и вскоре должен быть опубликован последний том активной зоне с минорными актинидами. Признано, что проект под эгидой МАГАТЭ должен остановиться на достигнутом.

Я согласен с тем, что было бы интересно провести сравнительные расчёты для зон с плотными топливами - нитридом и металлом. Но в первую очередь, на мой взгляд, стоит сейчас сконцентрировать усилия на анализе тяжёлых аварий. То есть, на расчётах тех событий, для которых мы и рассчитываем коэффициенты реактивности.

Мы давно начали обсуждать эту тему. Много говорили о ней с французами. Есть смысл подключить к нашим дискуссиям японцев, корейцев и индийцев. Для проведения работы всё есть, получены коэффициенты реактивности и оценки их точности. Теперь можно приступить к ней на практике.

Нас очень сильно волнует влияние пустотного эффекта на концепцию активной зоны. Вы знаете, да и я об этом сегодня говорил, что в России он нулевой, а за рубежом положительный. Различие между двумя подходами проявляется, в первую очередь, при тяжёлых авариях, и нам стоило бы разобраться вместе с международной общественностью, допустим ли НПЭР больше нуля.

Почему наши коллеги в своих проектах допускают положительные коэффициенты? Потому что они обосновывают надзорным органам протекание тяжёлых аварий и доказывают, что отдельные компоненты коэффициентов реактивности могут быть положительными при общих отрицательных обратных связях.

Несколько слов о том, к чему приводит нулевой НПЭР - чтобы не складывалось впечатление о том, что мы рассуждаем о некоей чисто академической задаче. Концепции наших быстрых реакторов хорошие, безопасные, но нулевой НПЭР ухудшает им экономику.

Если бы мы отступили от нулевой величины, то мы сумели бы создать активную зону с улучшенными показателями по экономике. А это важно, потому что общепринятая претензия к быстрым реакторам заключается именно в их дороговизне по сравнению с ВВЭР. А ведь, по-хорошему, наши новые БН должны бы превосходить по экономическим показателям не только тепловые ядерные реакторы, но и углеводородные станции.

Следовательно, нам нужно доказать, что небольшой положительный НПЭР не приведёт к какому-либо существенному ухудшению протекания тяжёлых аварий. Для этого нам нужно правильно понимать, как развиваются такие аварии. И совсем хорошо иметь независимое международное подтверждение нашего понимания. Это важно с точки зрения оптимизации экономики и безопасности быстрых проектов. Чрезмерное наращивание систем безопасности и излишнее ужесточение требований часто приводит к неоправданному удорожанию проектов.

О российских кодах

Раз уж мы часто упоминаем международное сотрудничество, то было бы логично спросить - на каком уровне находятся наши коды по сравнению с зарубежными?

Я бы не стал сейчас давать какие то окончательные оценки и выводы. У нас по-прежнему нет понятия российского кода по безопасности либо российского кода по физике. Напомню, что в России коды развивались потребителями в значительной мере по собственной инициативе и для решения конкретных своих задач. У ФЭИ были свои коды, у конструкторов свои, в третьих организациях - тоже свои. И на данный момент у нас существует целая коллекция кодов проанализировать которую в рамках одного интервью невозможно. У нас в Обнинске мы каждый год проводим семинар "Нейтроника" на котором мы на уровне специалистов пытаемся координировать деятельность по развитию кодов по нейтронной физике. Существует аналогичный семинар по теплофизике.

Но до недавнего момента ни государство, ни министерство не заказывало нам сделать системный код. Вот, наконец, я считаю, нам несказанно повезло, потому что именно сейчас такая задача сформулирована и поставлена в рамках принятой федеральной целевой программы по развитию ядерных энерготехнологий нового поколения.

В ближайшие 2-3 года мы надеемся, что появятся первые результаты, и можно более предметно будет вернуться к вашему вопросу и провести сравнение с зарубежными аналогами. Пока могу только упомянуть, что код будет развиваться кооперацией в составе ФЭИ, ИБРАЭ и других ведущих организаций России в области быстрых реакторов.

В целом, можно сказать, что наши коды по отдельным направлениям весьма неплохи, а специалисты - разработчики, конечно, не уступают зарубежным. Но вот всё же приходится признать, что пока мы по комплексным, системным кодам от зарубежных организаций отстаём. И, в частности, это проявляется в том, что доля иностранных кодов, которыми пользуются российские специалисты и разработчики неуклонно растёт. Это не очень хорошая тенденция.

А в расчётах бенчмарка какие коды применялись?

Всё-таки ещё раз напомню, что это был бенчмарк с упором на нейтронную физику. Для этого уровня у нас проработки очень хорошие и очень качественные. Мы применяли и диффузионные коды, и прецизионные, и коды на основе Монте-Карло, способные рассчитывать гетерогенные модели. Тут как раз мы продемонстрировали высокий уровень.

Отстаём мы на следующем шаге - там, где требуется объединение физики, гидравлики, теплофизики и прочности, в особенности для трёхмерных геометрий и многофазных систем. Есть набор из нескольких кодов, которые мы используем для расчётов БН, и есть коды, которые пытаются использовать для расчётов БР с тяжёлым теплоносителем. Но системного согласованного, выверенного и верифицированного серьёзного кода нет. Надеемся, что за 2-3 года мы первый вариант подобного кода сделаем.

И международный проект по тяжёлым авариям как продолжение нашего бенчмарка был бы очень к месту. Мы работаем над созданием системного кода, и было бы очень полезно верифицировать его в рамках международного сотрудничества. Можно было бы сформулировать новый бенчмарк на основе полученных результатов, выставить его через МАГАТЭ или в рамках двухсторонних контактов с Францией, Японией или Индией.

Верификация на экспериментах

При формулировании бенчмарка потребуется достаточно подробно описать активную зону. Дать точные параметры всех компонентов, материалов… Его изучение позволит зарубежным организациям получить хорошее представление о нашем технологическом ноу-хау по быстрым реакторам. Не опасно ли это?

Не думаю. Бенчмарки по определению всегда создаются за счёт упрощения реальных конструкций. При этом нужно чётко понимать, что влияет на искомые результаты, а чем можно пожертвовать. Мы прошли первый бенчмарк, ориентированный на нейтронную физику, который, конечно, не содержит каких-либо ноу-хау. Сейчас мы выходим на этап, когда модель нужно дополнять для более правильного описания теплогидравлики.

Заниматься этим следует в тесном контакте с конструктором. Но совершенно очевидно, что мы не можем и не будем выдавать в качестве бенчмарка проектную документацию. Что-то должно быть упрощено или отброшено при сохранении, конечно, основной идеи бенчмарка. Поэтому отвечу так - составление бенчмарка всегда является серьезной работой, выполняемой совместно научным руководителем и главным конструктором.

Однако за предыдущие годы, накоплен большой опыт создания подобных международных бенчмарков, причем естественно не только российских. Например, сейчас Франция передала в МАГАТЭ два бенчмарка, построенных на базе самых последних экспериментов, выполненных в реакторе Phenix. Большинство ядерных стран уже давно кооперируются с целью создания баз данных по бенчмаркам по критической безопасности, по реакторным экспериментам. Это общепринятая практика. А для защиты наших технологических ноу-хау существует серьезная и продуманная система.

Вопрос по тяжёлым авариям. Планируется ли экспериментальная проверка? Хотелось бы что-нибудь реально расплавить и убедиться, что код работает верно. Особенно, если вы собираетесь делать такой сильный вывод, как о снятии требования по нулевому НПЭР.

Прежде всего, не дай Бог в прямом виде промоделировать то, что мы моделируем в расчётах! Модель один к одному процессов тяжёлых аварий (некоторые из которых просто постулированные) невозможна. Поэтому, естественно эта задача разбивается на раздельные подзадачи.

Например, НПЭР и физические аспекты мы можем изучить на критических стендах БФС, проверить правильность и точность его расчётов. Вопросы кипения натрия, двухфазных натриевых потоков делаются на теплофизических стендах нашего института.

Отдельно должны быть эксперименты по топливу, по его поведению в аварийных режимах. Они должны делаться на импульсных стендах типа нашего БАРС, либо там, где есть возможность моделировать поведение топлива при импульсных режимах с быстрыми нагревами топлива.

Отдельно должны быть эксперименты, в которых исследуется выход газов и продуктов деления из элементов в теплоноситель и другие технологические среды.

Таким образом, всю задачу мы разбиваем на отдельные компоненты. Каждый компонент естественно исследовать в безопасных нормальных стендах. Для этого в ФЭИ существует уникальная и многоплановая экспериментальная база.

Конечно, можно думать о комплексных экспериментах, в которых одновременно плавилось бы топливо и проверялись какие-либо другие параметры, например, коэффициенты реактивности. Поставить их можно, но сложно. Это весьма дорогие эксперименты.

Но мы знаем, что за рубежом такая работа проводилась, и определённые результаты были получены. Вполне возможно их проще купить, чем повторять у себя. Это один подход.

Второй путь состоит в участии в международных бенчмарках одновременно вместе с зарубежными кодами, прошедшими верификацию на собственных экспериментах. Например, вместе с японцами, у которых такие эксперименты есть. Если мы увидим, что наши результаты хорошо соответствуют международным расчётам, то эта информация для нас будет важной. Это своего рода "косвенная" верификация на экспериментах.

Перспективы сотрудничества

С кем мы можем сотрудничать? О Франции и Японии много говорилось, но как насчёт стран-новичков, например, Китая? У китайцев появляется собственная экспериментальная база в лице реактора CEFR. Есть ли здесь какие-то перспективы на сближение, на совместные работы? Особенно если вспомнить о планах по строительству БН-800 для Китая.

Начнём с того, что быстрая тематика с 50-ых годов всегда была темой международного сотрудничества, в отличие от других тематик, связанных с обороной. Так, с Францией у ФЭИ был договор о кооперации ещё в 70-ые годы, работало 8 или 9 рабочих групп. Кстати, в последние три года в нашем сотрудничестве с Францией возникла пауза, связанная с подготовкой нового соглашения, и нам было очень приятно узнать, что этот документ был подписан в Москве во время выставки "Атомэкспо-2010".

По другим странам. Хорошие шансы есть на сотрудничество с Америкой. Мы ожидаем ратификации соглашения "123" в конгрессе Соединённых Штатов, после чего мы сможем стартовать совместную работу. Подготовка к ней уже началась, в частности, в Обнинске состоялось совещание, на котором были намечены серьёзные планы. У американцев есть полезный для нас опыт, который мы могли бы применить при строительстве МБИР, при создании кодов, и так далее.

С Южной Кореей соглашение есть. Более того, у нас есть договор по моделированию на БФС корейского проекта KALIMER. Он был подписан весной этого года, обсуждалась эта тема пять лет. Фактически, сейчас мы собираем у себя соответствующую модель активной зоны.

Теперь о Китае. Мало того, что всю физику и конструкцию CEFR обосновывали наши специалисты, я, мои коллеги из ФЭИ и других организаций принимаем непосредственное участие в физическом пуске данного реактора. А уже если стартует проект по поставке в Китай двух БН-800, то это станет исторической вехой. Если я не ошибаюсь, то это первый в мире опыт экспорта за рубеж быстрых энергетических реакторов.

Интересно, что при сооружении БН-800 мог бы взять на себя Китай? Их люди уже ездят по России, присматриваются… Говорят, что корпус они могут сделать самостоятельно, а вот с парогенераторами не справятся. Что по поводу расчётной части - будет ли это чисто российская работа, или китайцы попытаются взять на себя какую-то её часть?

Вопросы разделения работ между российскими и китайскими специалистами находятся в процессе обсуждения. Я не готов дать вам окончательный ответ. Но, по моим ощущениям, китайцы предпочтут, чтобы все вещи, связанные с разработкой, обоснованием и расчётными кодами, взяла бы на себя Россия. А вот по оборудованию и СМР они попытаются что-то делать собственными силами для снижения цены.

Но ещё раз - по интеллектуальной части проекта китайцы почти наверняка согласятся с тем, что её должны выполнять россияне. Окончательно это станет известно скорее всего уже скоро, речь идёт о месяцах.

А вот об Индии мы говорим с чувством неудовлетворённости. Это одно из ведущих на сегодняшний день государств в области быстрых реакторов, но сотрудничество с ним у нас получается плохо. Не знаю точно, что на сей счёт думают в "Росатоме", но с точки зрения специалиста такое сотрудничество нам было бы полезно. То же самое справедливо и для случая Японии.

В Индии происходит что-то не до конца понятное. С одной стороны, заявлены амбициозные планы, с другой, специалисты не могут дать ответ, что испытывается у индийцев, обосновывают ли они своё топливо, и прочее.

Мы можем судить по тому, что Индия заявляет на конференциях, в том числе, в Киото. Они представляют много докладов, их делегации ведут себя очень активно. Планы их интересные, очень амбициозные. Подход близок к нашему за тем исключением, что они планируют быстро перейти на металлическое топливо, а потом на ториевый цикл - то есть, на те направления, куда мы в ближайшее время не собираемся.

Было бы очень интересно понять, насколько всё это серьёзно. Может быть, это и фикция. Может быть, их оптимизм не оправдан. Но за ними нужно очень и очень внимательно наблюдать, потому что мы рискуем в лице Индии приобрести серьёзного конкурента, если не будем правильно оценивать ситуацию.

Спасибо, Юрий Сергеевич, за очень интересное интервью для электронного издания AtomInfo.Ru.

Ключевые слова: Нейтронно-физические расчёты реакторов, Быстрые натриевые реакторы, ФЭИ, Интервью, Юрий Хомяков


Другие новости:

Нужна ли ловушка расплава для APR-1400?

Эмираты в раздумьях, финны считают, что внутрикорпусного охлаждения недостаточно.

Белоруссия согласилась на российские условия по АЭС - источник

Белорусское руководство согласилось создать СП с Россией по сбыту электроэнергии от будущей АЭС на паритетных условиях.

USEC получила 75 млн долларов от "Toshiba" и B&W

Следующий платёж на центрифужный завод пройдёт только после получения госгарантий от DoE.

Герой дня

Алеш Йон

Чешские компании ждут шанса вернуться в игру

Мы договорились со словаками и венграми, что займёмся развитием Allegrо и в перспективе построим демонстрационный референтный реактор.



ИНТЕРВЬЮ

Юрий Юрьев

Юрий Юрьев
В космосе по прямой не летают, к сожалению. Оптимальные орбиты - это годы. Но я думаю, что туда полетят молодожёны. Им будет нескучно, и вернутся обратно они втроём.


МНЕНИЕ

AtomInfo.Ru

AtomInfo.Ru
Эксклавная расположенность накладывает отпечаток на ситуацию в Калининграде. Область не имеет прямых связей с ЕЭС России и покрывает дефицит электроэнергии за счёт внешних поставок.


Поиск по сайту:


Rambler's Top100